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Abstract
A detailed comparison between the magnetic behaviours of the ‘as-prepared’ ap-Nix Al100−x

alloys with x = 74.3, 74.8, 75.1 and 76.1 at.% (that have both compositional disorder and site
disorder) and ‘annealed’ counterparts (that have only compositional disorder) over a wide range
of temperatures and magnetic fields (H ) permits us to draw the following conclusions about the
role of disorder. Regardless of the type of disorder, Curie temperature, TC, and spontaneous
magnetization at 0 K, M0, decrease in accordance with the power laws TC(x) = tx(x − xc)

τ and
M0(x) = mx(x − xc)

ψ as x → xc (the threshold Ni concentration below which the long-range
ferromagnetic order ceases to exist). Site disorder lowers the value of xc by nearly 1 at.% Ni,
enhances TC for a given composition (more so as x → xc) by increasing the number of Ni
nearest neighbours for a given Ni atom, and leaves M0 essentially unaltered because site
disorder has essentially no effect on the density of states, N(EF), at the Fermi level, EF, and the
shape of the density-of-states curve near EF (except for x ≈ xc, where site disorder tends to
primarily enhance N(EF) and thereby stabilize long-range ferromagnetic order for Ni
concentrations below the threshold concentration, xc

∼= 74.6 at.%, dictated by compositional
disorder). At low and intermediate temperatures, spontaneous magnetization, M(T, H = 0),
as well as the ‘in-field’ magnetization, M(T, H ), exhibit non-Fermi liquid behaviour in the
samples ap-Ni74.3 and ap-Ni74.8. As xc is approached from above, i.e. as the compositional
disorder increases, stronger deviations from the Fermi liquid behaviour occur and the
temperature range over which the non-Fermi liquid behaviour persists widens. In contrast, the
ap-Ni75.1 and ap-Ni76.1 alloys follow the behaviour that the self-consistent spin-fluctuation
theory predicts for a weak itinerant-electron ferromagnet with no disorder. Both compositional
disorder and site disorder have no effect on the critical behaviour of the alloys near the
ferromagnetic-to-paramagnetic phase transition.

1. Introduction

A recent appraisal [1] of the previously reported [2–9] results
on the magnetic behaviour of binary Nix Al100−x alloys with
73.5 at.% � x � 76.5 at.% highlighted the controversies that
surround the nature of magnetism in this weakly ferromagnetic
alloy system. Attributing the disagreement between the results
of earlier investigations to a complex interplay between the
compositional disorder and site disorder, and to a complete

1 Author to whom any correspondence should be addressed.

neglect of the spin-wave contribution to magnetization at
low temperatures, Kaul and Semwal made an attempt to
unravel the individual roles of compositional disorder [1]
and site disorder [10, 11]. To this end, the study of
magnetization in the ‘as-prepared’ NixAl100−x alloys [1]
with 74 at.% � x � 76 at.% (the Ni concentration
range that includes the critical concentration [2–7] xc ≈
74.5 at.% below which long-range ferromagnetic order ceases
to exist) and in the alloy of stoichiometric composition,
Ni3Al, ‘prepared’ in different states of site disorder [10, 11],
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revealed the following. (i) Regardless of the degree of site
disorder present, spin waves at low temperatures (0.09TC �
T � 0.28TC), zero-point and thermally excited local spin-
density fluctuations at intermediate temperatures (0.32TC �
T � 0.62TC), and non-propagating thermally excited spin
fluctuations at temperatures close to the Curie point, TC

(0.65TC � T � 0.95TC), completely account for [10, 11]
the thermal demagnetization of spontaneous magnetization,
M(T, 0), and ‘in-field’ magnetization, M(T, H ). In contrast,
the spin-fluctuation theories [12–14], that predict precisely
this behaviour of M(T, 0) and M(T, H ) for a weak itinerant-
electron ferromagnet in the absence of any disorder, failed [1]
to describe the decline in M(T, H = 1 kOe) with increasing
temperature observed in the Nix Al100−x alloys that have
substantial compositional disorder. Instead, the functional
form of M(T, H = 1 kOe) observed in these alloys could
be closely reproduced over the entire temperature range, T �
TC, by the temperature variation predicted by the percolation
(localized-spin) theories [15–17] that invoke a crossover
in the spin dynamics on a three-dimensional ferromagnetic
percolating network from a hydrodynamic (magnon) regime
at low temperatures to a critical (fracton) regime at high
temperatures. Moreover, the power laws, M0(x) ∼ (x − xc)

βP ,
D0(x) ∼ (x−xc)

θP and TC(x) ∼ (x−xc)
φ with x > xc, which,

according to the percolation theories [15, 16], characterize the
percolation critical behaviour (second-order phase transition)
at x = xc in three-dimensional percolating networks, described
very well the Ni concentration dependences of the spontaneous
magnetization at 0 K, M0 ≡ M(0, 0), the spin-wave stiffness at
0 K, D0, and the Curie temperature, TC. (ii) Like compositional
disorder, site disorder smears out the sharp features in the
density-of-states (DOS) curve near the Fermi level, EF, and
reduces the DOS at EF, N(EF), M0, D0 and TC. (iii) Site
disorder affects the magnitude of suppression of the low-lying
magnetic excitations (spin waves and spin fluctuations) by
external magnetic field (H ) but does not alter the functional
form of the suppression with H .

Though the above observations (i)–(iii) facilitated
characterizing the roles of site disorder and compositional
disorder in influencing the magnetic properties of the weakly
ferromagnetic alloy system, Nix Al100−x , they concomitantly
raised the following basic questions. (1) Why do the
spin-fluctuation theories [12–14], which otherwise enjoy
the distinction of providing a correct explanation for the
characteristic attributes of weak itinerant-electron magnets, fail
to describe the magnetic behaviour of weak itinerant-electron
ferromagnets with compositional disorder? (2) How does one
reconcile to the fact that weak itinerant-electron ferromagnets
with compositional disorder follow closely the predictions of
a localized-spin (percolation) theory? As a reconciliatory
measure, Kaul and Semwal [1] conjectured that quenched
random disorder in such systems could cause localization of
the otherwise itinerant magnetic moments. This conjecture,
however, does not explain as to why site disorder cannot be as
effective in localizing the magnetic moments as compositional
disorder supposedly is. The non-Fermi liquid behaviour of
resistivity at low temperatures in the same alloy system,
NixAl100−x , reported in the preceding paper [18] (henceforth
referred to as paper I), adds a new dimension to the problem.

To seek answers to these fundamental queries, extensive
high-resolution bulk magnetization, M(T, H ), measurements
were undertaken on well-characterized samples of NixAl100−x

alloys, in the ‘as-prepared’ state. An elaborate analysis
of the present M(T, H ) data not only resolves issues
(1) and (2), mentioned above, by bringing out clearly
the effect of compositional disorder and/or site disorder
on the contributions to M(T, 0) and M(T, H ), arising
from spin waves at low temperatures and non-propagating
thermally excited longitudinal and transverse spin fluctuations
at intermediate temperatures and for temperatures close to
TC, but also quantifies the suppression of these contributions
by H . At low temperatures, M(T, 0) and M(T, H )
exhibit non-Fermi liquid behaviour in the alloys with xc

∼=
73.5 at.% � x < 75.1 at.%, much the same way as the
resistivity and magnetoresistance do, as reported in paper I.
The present results also demonstrate that the compositional
disorder and site disorder (for a precise definition of the
terms ‘compositional disorder’ and ‘site disorder’, see section
2.2 of paper I) change TC drastically but have practically
no effect on the magnetic behaviour in the critical region
since, irrespective of the amount or type of disorder present,
mean-field critical exponents characterize the ferromagnetic-
to-paramagnetic phase transition at TC.

2. Experimental details

For magnetic measurements, spherically shaped samples
(2.5 mm in diameter) of ap-Ni74.3, ap-Ni74.8, ap-Ni75.1 and
ap-Ni76.1 were spark-cut from the ‘as-prepared’ (ap) rods, as
already mentioned in paper I. Note that the magnetization,
resistivity and magnetoresistance samples come from the same
batch. Though the composition of these alloys is not very
different from those used previously in [1], the x-ray diffraction
patterns of the corresponding compositions are distinctly
different (cf figure 1 of paper I with figure 1 of [1]) in that
the substantial (200) texture, present in the earlier samples, is
completely absent in the new ones.

Magnetization, M(T, Hext), of polycrystalline NixAl100−x

samples was measured in external static magnetic fields (Hext)
up to 15 kOe on a vibrating sample magnetometer (VSM).
These measurements cover a temperature range of 15 K �
T � 300 K that embraces the critical region near the
ferromagnetic (FM)–paramagnetic (PM) phase transition. M
versus Hext isotherms were taken at 60 predetermined but
fixed values of Hext (each stable to within ±1 Oe) ranging
from 0 to 15 kOe, at the temperature intervals of 0.5, 0.1,
0.05 and 0.025 K within the ranges 15 K � T � 0.5TC,
0.5TC � T � TC − 10 K, TC − 10 K � T � TC − 3 K,
TC − 3 K � T � TC + 3 K and then the temperature
interval was slowly increased to 0.1, 0.5, 1, 5 and 10 K while
increasing the temperature to 300 K. A demagnetizing factor,
N , was computed from the inverse slope of the linear M–
Hext isotherm (i.e. 4πN = (slope)−1 = Hext/M) taken
at the lowest temperature T = 15 K in the field range
−20 Oe � Hext � 20 Oe. To construct the Arrott (M2(T, H )
versus H/M(T, H )) plots out of the M(T, Hext) data, the
external magnetic field was corrected for the demagnetizing
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Figure 1. Variations of TC and M0 with Ni concentration, x ,
compiled from the values of TC and M0 obtained in the present work
and those reported previously on the alloys with the same or similar
composition. Continuous (dashed) curves represent the best
least-squares fits to our (those reported in [2, 3, 5] and [9]) TC(x) and
M0(x) data based on the power laws mentioned in the text.

field, i.e. H = Hext − 4πN M(T, Hext). The spontaneous
magnetization at different temperatures, M(T, H = 0), was
computed from the intercepts on the ordinate obtained by
extrapolating the high-field (also the low-field) portion of the
Arrott plot isotherms to H = 0 (in the case of ap-Ni74.3) for
T � TC, as elucidated in section 3.4. The M–H isotherms,
used for constructing Arrott plots, were converted into the M–
T data at 16 different but fixed values of H in the interval
0.3 kOe < H < 15 kOe. Note that the above-mentioned
detailed magnetization measurements were not performed on
the ap-Ni75.1 sample when the preliminary measurements
revealed a magnetic behaviour that was not significantly
different from the one reported earlier [10, 11] on the annealed
counterpart of this sample. However, magnetization was
measured on all the samples, including ap-Ni75.1, as a function
of Hext for Hext � 70 kOe at T = 5 K (and at a few specific
temperatures so that a quantitative comparison between the
magnetoresistance data and the spin-fluctuation theory could
be made in paper I) and as a function of temperature in the
range from 5 to 150 K at Hext = 1 kOe, using a SQUID
magnetometer.

3. Results and discussion

The Curie temperature, TC, and spontaneous magnetization at
0 K, M0 ≡ M(0, 0), determined from the Arrott plots by
the following procedure, are displayed in the top and bottom

panels of figure 1. While TC corresponds to the temperature
at which the linear Arrott plot isotherm passes through the
origin, M0 is computed from the intercept on the ordinate
yielded by a linear extrapolation [1] of the high-field portion
of the M2(T, H ) versus H/M(T, H ) plot at T = 5 K to
H = 0. Alternatively, M0 is extracted from the optimum
fit to the M(T = 5 K, H ) isotherm for fields above the
technical saturation, i.e. over the range 2 kOe � H �
70 kOe, based on the expression [1, 10] M(T = 5 K, H ) =
M0 + λ

√
H + χhf H , where the

√
H term accounts for the

suppression of spin waves by the field H [19] and the high-
field susceptibility, χhf, is related to the exchange-enhanced
Pauli spin susceptibility [1, 10]. Both the determinations
yield the same value (within the uncertainty limits) for M0

for a given composition. Figure 1 compares the values of
TC and M0, so obtained for the samples ap-Ni74.3, ap-Ni74.8,
ap-Ni75.1 and ap-Ni76.1, with those determined for the same
samples (samples of similar composition) from resistivity and
magnetoresistance [18] (in the literature [1–3, 5, 9]). Note
that only the Ni atoms carry magnetic moment in the alloys
in question and hence compositional and/or site disorder
in the Ni sub-lattice alone is of direct relevance so far as
the magnetic properties are concerned. Considering that
the ‘as-prepared’ samples used in the present magnetization,
resistivity and magnetoresistance [18] measurements and in
the previous study [1] have both compositional disorder and
site disorder whereas the well-annealed (and hence completely
ordered) counterparts used in earlier investigations [2, 3, 5, 9]
have only compositional disorder, the following unambiguous
conclusions about the roles of compositional disorder and site
disorder can be drawn from the comparison made in figure 1.
(i) With increasing compositional disorder, i.e. as x → xc,
TC and M0, in the alloys with compositional disorder alone,
decrease in accordance with the power laws (dashed curves)
TC(x) = tx(x − xc)

τ and M0(x) = mx(x − xc)
ψ with xc =

74.60(6) at.%, τ = 0.43(5) and ψ = 0.40(8). (ii) The effect
of site disorder is to slow down the variations (continuous
curves) of TC and M0 with x such that the above power laws
still hold but with xc = 73.6(1) at.%, τ = 0.33(3) and
ψ = 1.00(5). Alternatively, compared to the values of TC

for the NixAl100−x alloys with compositional disorder alone,
site disorder enhances TC for a given composition (leaves TC

essentially unaltered) and this enhancement grows rapidly as
x → xc (for x � 76 at.%). In sharp contrast with this
behaviour, except for x ≈ xc, M0 is relatively insensitive to
site disorder. Why TC(x) is more sensitive to site disorder than
M0(x) can be understood [1, 10] as follows, in terms of the
spin-fluctuation theories [12–14] that yield the expressions for
TC and M0:

TC =
(

2π2

5α

)3/4 (
cν
kB

)
(h̄γν)

1/4M3/2
0 (1)

M0 = NμB21/2
{[N ′(EF)]2 − [N ′′(EF)N(EF)/3]}−1/2

× [N(EF)]2[I N(EF)− 1]1/2. (2)

In equations (1) and (2), the coefficient of the gradient term in
the Ginzburg–Landau expansion, cν , is a measure of the spin-
fluctuation stiffness, while γν and the quantity within the curly
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brackets in equation (2) depend on the shape of the density-
of-states (DOS) curve near the Fermi level, EF, as well as on
the DOS at EF, N(EF). According to these expressions, M0

is sensitive to both N(EF) and the shape of the DOS curve
near EF whereas, apart from these factors, TC also depends
on cν . Thus, the insensitivity of M0 to site disorder implies
that site disorder has essentially no effect on N(EF) and the
shape of the DOS curve near EF (except for x ≈ xc, where
site disorder tends to primarily enhance N(EF) and thereby
stabilize long-range ferromagnetic order for Ni concentrations
below the threshold concentration, xc

∼= 74.6 at.%, dictated
by compositional disorder). It immediately follows that, as
x → xc, site disorder increases the concentration of Ni atoms
on the Al sub-lattice beyond that allowed by the compositional
disorder and thereby enhances cν (and hence TC) because of
the increase in the number of Ni nearest neighbours for a given
Ni atom. Site disorder thus lowers the critical concentration,
xc, by nearly 1 at.% Ni.

Having discussed the influence of compositional disorder
and site disorder on M0 and TC, we now focus our attention on
their effect on the temperature and magnetic field dependences
of magnetization in the temperature regimes where different
kinds of low-lying magnetic excitations dominantly contribute
to M(T, H ).

3.1. Low temperatures (T � TC )

In weak itinerant-electron ferromagnets without any disorder,
spin-wave modes of wavevector q , in the region around q = 0
in the Brillouin zone, exist as well-defined excitations at low
temperatures, T � TC. According to the spin-fluctuation
theory [14], this spin-wave (SW) contribution to magnetization
is given by

[M(T, 0)]SW = M(0, 0)− gμBξ(3/2)[kBT/4πD(T, 0)]3/2,

H = 0 (3a)

[M(T, H )]SW = M(0, H )− gμB Z(3/2, tH )

× [kBT/4πD(T, H )]3/2, H 	= 0. (3b)

In these equations, the Bose function Z(3/2, tH ) =∑∞
n=0 n−3/2e−ntH with the reduced field tH = gμB H/kBT

allows for the energy gap in the spin-wave spectrum,
introduced by Hext and anisotropy fields, and D is the
spin-wave stiffness. In the case of weak itinerant-electron
ferromagnets, D renormalizes with temperature as D(T ) =
D(0)(1 − D2T 2) where the spin-wave stiffness at 0 K,
D0 ≡ D(0) = gμBc⊥M(0, 0), is independent of the field.
An attempt has been made to determine D0, the thermal-
renormalization coefficient, D2, M0 ≡ M(0, 0) and ‘in-
field’ magnetization at 0 K, M(0, H ), from the fits to the
M(T, 0) and M(T, H ) data based on equations (3a) and (3b),
respectively, using the ‘range-of-fit’ analysis in which the
variation in the above-mentioned parameters is monitored as
the temperature range (T � TC) of the fit is varied. Due
to the extra temperature variations introduced by the thermal
renormalization of spin-wave stiffness and the presence of the
function Z(3/2, tH ) in equation (3b), equations (3a) and (3b)
predict a concave-downward curvature in the M(T, 0) versus
T 3/2 and M(T, H ) versus T 3/2 plots. In sharp contradiction

with this prediction, the M(T, H = 1 kOe) versus T 3/2

plots for ap-Ni74.3 and ap-Ni74.8 alloys, shown in the inset
of figure 2(a), exhibit a concave-upward curvature, which is
more pronounced in the alloy ap-Ni74.3 whose composition is
closer to the critical concentration xc

∼= 73.6 at.%. Exactly
the same behaviour was observed previously [1] in the alloys
of similar composition. Thus, equations (3a) and (3b) cannot
describe the temperature dependence of magnetization in the
alloys ap-Ni74.3 and ap-Ni74.8. In contrast, the M(T, H =
1 kOe) versus T 3/2 plots for the ap-Ni75.1 and ap-Ni76.1
alloys, displayed in the inset of figure 2(b), show the expected
curvature and equation (4) does indeed closely reproduce
(continuous curves through the data points, represented by
symbols) the observed M(T ) at 1 kOe, as is evident from the
lower panel of figure 2(b). The percentage deviations of the
data from the best least-squares (LS) fits based on equation (4),
shown in the bottom panel of figure 2(b), do not exceed ±0.02
in the temperature range 5 K � T � 18 K. These LS fits
yield the values for D0 as 67.5(6) meV Å

2
and 70(1) meV Å

2

for the alloys ap-Ni75.1 and ap-Ni76.1, respectively. Lower
magnitude of D0 in ‘as-prepared’ Ni75.1 (Ni76.1) compared to
D0 = 69.6(14) meV Å

2
, from the magnetization data [10, 11]

or D0 = 85(15)meV Å
2

(D0 = 95(5)meV Å
2
), from inelastic

neutron scattering results [20] ([21]), for a well-annealed, and
hence completely ordered, counterpart, basically reflects a
reduction in the coefficient c⊥ by site disorder. That this is
indeed the case is obvious from the relation D0 = gμBc⊥M0

and our observation that site disorder has essentially no effect
on M0 in this concentration range (figure 1).

The deviation plots, shown in the lower panel of
figure 2(a), clearly demonstrate that the functional form

M(T, H ) = M(0, H )
(
1 − An(H )T

n
)

(4)

with n = 1.20(1) and 1.25(1) describes the M(T, H = 1 kOe)
data in the temperature ranges 5 K � T � 25 K and 5 K �
T � 20 K for the samples ap-Ni74.3 and ap-Ni74.8 far better
than either equation (3b) or other forms M ∼ T 2 [2, 3, 5] and
M2 ∼ T 2 [6, 7] used in the literature for completely ordered
samples. Spin-fluctuation theories [22, 23] of non-Fermi
liquid behaviour, which do not include any kind of disorder,
predict n = 4/3 for a three-dimensional weak itinerant-
electron ferromagnet. The finding that the values of the
exponent n for the samples ap-Ni74.3 and ap-Ni74.8 are closer
to this value (1.33) than n = 1.5, expected for the normal
spin-wave behaviour at low temperatures, asserts that these
samples, with composition close to the critical concentration
xc = 73.6(1) at.%, exhibit non-Fermi liquid behaviour. This
inference is not only consistent with the similar behaviour
observed in the resistivity [18] (specific heat [8]) of these
samples (the samples with similar composition) in nearly the
same temperature ranges but also with the premise that the
non-Fermi liquid behaviour for x ≈ xc is a consequence
of the alteration in the spin-wave dispersion, leading to
severe damping of spin waves, brought about primarily by
compositional disorder (with site disorder only tending to
enhance the effect of compositional disorder); for details, see
the paragraph following equation (7) in paper I.
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(a)

(b)

Figure 2. The upper panels display M(T, H = 1 kOe) as a function
of temperature at low temperatures for the samples ap-Ni74.3,
ap-Ni74.8, ap-Ni75.1 and ap-Ni76.1 along with the best least-squares fits
(continuous curves) through the data (open circles) based on
equations (3b) and (4) of the text, while the lower panels show the
corresponding percentage deviations of the data from the fits based
not only on equations (3b) and (4) but also on the other expressions
used previously in the literature. The inset in the upper panel of
figure 2(a) serves to highlight the concave-upward deviations of the
M(T, H = 1 kOe) data from the spin-wave T 3/2 law in the case of
the samples ap-Ni74.3 and ap-Ni74.8.

The suppression of spin waves or over-damped spin waves
by the external magnetic field can be quantified by monitoring
the field dependence of either the coefficient, A3/2, of the T 3/2

term when equation (3b) is cast in the form of equation (4) or
the coefficient An in equation (4). The coefficients An(H )with
n = 1.2, 1.25 or 1.5 are nothing other than the slopes of the
linear M–T n plots, for a given value of n, at fixed values of H ,
as illustrated by figure 3(a). The representative data shown in
figure 3(a) highlight that the exponent n does not depend on H
while the linear An–

√
H plots in figure 3(b) demonstrate that

the coefficient An of the T n term decreases with increasing H
in accordance with the relation [19]

An(H ) = An(0)
(
1 − νH 1/2

)
. (5)

The spin-fluctuation theory [19] thus correctly predicts a field-
independent exponent n and the

√
H suppression of spin

waves with magnetic field. For a given composition, the
value of An(0) ≡ An(H = 0), obtained by extrapolating
the linear An(H ) − √

H plot (the least-squares fit straight
lines shown in figure 3(b)) to H = 0, exactly coincides
with that (solid symbol) determined directly from the slope
of the linear spontaneous magnetization, M(T, H = 0),
versus T n plot (e.g. the straight line through the data points
denoted in figure 3(a) by crosses). Figure 4 displays the
variations of An(H = 0) and ν with the Ni concentration,
x . While [An(H = 0)]−1 is a measure of spin-wave stiffness
(cf equations (3a) and (4)), the coefficient ν of the

√
H

term quantifies the suppression of spin waves by H . Thus,
the observed increase in An(H = 0) as x → xc implies
that the compositional disorder lowers the thermal energy
required to excite long-wavelength spin waves. Similarly, the
observed variation of ν with x conveys that the compositional
disorder promotes the field-induced suppression of spin waves
by reducing their stiffness.

3.2. Intermediate temperatures (T < TC )

In the intermediate range of temperatures, the spin-wave
contribution to M(T, 0) and M(T, H ) is completely masked
by that arising from non-propagating spin fluctuations (SF).
The self-consistent spin-fluctuation calculations [14] yield the
following expression for the spin-fluctuation contribution to
magnetization at intermediate temperatures

[M(T, H )]SF = M(0, H )[1 − A2(H )T
2 − A4/3T 4/3]1/2, (6)

which is valid for both H = 0 and H 	= 0. In
equation (6), the T 2 term is solely due to the thermally excited
(TE) spin fluctuations while the T 4/3 term is the net result
of the competing claims [14] made by TE and zero-point
(ZP) components of spin fluctuations with ZP contribution
dominating over the TE one. The TE contribution gets
progressively suppressed by H whereas the ZP contribution
is nearly independent of H . The ‘range-of-fit’ analysis of
the M(T, H = 1 kOe) data based on equation (6) yielded
different results for different compositions (figure 5). Since
the contribution of spin waves to magnetization persists to
temperatures well above 0.5TC in ap-Ni74.3, an extremely

5
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Figure 3. The upper panel displays a typical low-temperature M–T n

plot at a few representative but fixed values of H . The continuous
lines through the M(T, H) data (open circles) and M(T, H = 0)
data (crosses) are the least-squares fits based on equation (5). The
lower panel demonstrates that the coefficient An of the T n term (with
n = 1.2, 1.25 and 1.5 for the samples ap-Ni74.3, ap-Ni74.8 and
ap-Ni76.1, respectively) in equation (4) varies linearly with

√
H and

thereby testifies to the validity of equation (5).

Figure 4. Variations of the prefactor An(0) ≡ An(H = 0) and the
coefficient ν (appearing in equation (5)) with Ni concentration.
Smooth curves through the data serve only as a guide to the eye.

narrow intermediate temperature range precluded a meaningful
comparison with theory [14], i.e. with equation (6). In the
ap-Ni74.8 sample, the T 2 term is so small that [M(T, H )]2

Figure 5. Temperature variations of M(T, H = 1 kOe) at
intermediate temperatures for the samples ap-Ni74.8, ap-Ni75.1 and
ap-Ni76.1. The continuous curves through the data points (open
symbols) represent the theoretical fits based on equation (6)
of the text.

varies as T 4/3 (the upper panel in figure 6(a)) and contrary
to the theoretical expectation [14] that the coefficient A4/3

is independent of H (equation (6)), A4/3(H ) ∼ √
H (see

the lower panel of figure 6(a)). As we shall show in
section 3.3, a total absence of the T 2 term and hence a
complete dominance of the T 4/3 term, and the

√
H variation

of A4/3(H ), mark the characteristic attributes of the spin-
fluctuation contribution to M(T, H ) at temperatures close to
TC. In this context, at intermediate temperatures, ap-Ni74.8

behaves as if it were near a quantum critical point. Thus, in
concurrence with the conclusions drawn from the resistivity
data [18], the non-Fermi liquid behaviour is observed over an
unusually wide temperature range T � 0.55TC in ap-Ni74.3

and ap-Ni74.8. Contrasted with this behaviour, equation (6)
completely accounts for (continuous curves through the data
points) the observed temperature dependence of M(T, H )
(open squares or circles) and M(T, H = 0) (crosses) in
ap-Ni75.1 and ap-Ni76.1 over the temperature ranges 0.3TC �
T � 0.6TC and 0.5TC � T � 0.75TC, apparent in figure 5
and in the upper panel of figure 6(b). In conformity with the
predictions of the self-consistent spin-fluctuation model [14],
the coefficient A4/3 of the T 4/3 term is independent of H
whereas that of the T 2 term, A2, depends linearly on H (the
lower panel of figure 6(b)) and follows the relation A2(H ) =
A2(0)(1 − ϕH ) with A2(0) = 1.45(2) × 10−4 K−2 and
ϕ = 1.87(5) × 10−5 Oe−1. These values are lower than
those A2(0) = 3.12(2) × 10−4 K−2 and ϕ = 2.12(13) ×
10−5 Oe−1 reported [10, 11] for the ordered Ni3Al compound.
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(a)

(b)

Figure 6. The upper panels display the M2–T 4/3 and M–T plots at
intermediate temperatures for a few representative but fixed values of
H for the samples ap-Ni74.8 and ap-Ni76.1, respectively. The
continuous lines through the M(T, H) data (open circles) and
M(T, H = 0) data (crosses) are the least-squares fits based on
equation (6). The lower panel in (a) ((b)) demonstrates that the
coefficient A4/3(H) [A2(H)] of the T 4/3 [T 2] term in equation (6)
varies linearly with

√
H [H ].

Recognizing that [14] [A2(0)]−1 is a measure of the spin-
fluctuation stiffness while the slope ϕ of the A2 versus H
straight line quantifies the suppression of thermally excited
(TE) spin fluctuations by magnetic field, reduced values of
A2(0) and ϕ in the sample ap-Ni76.1 indicate that, with
increasing Ni concentration, the TE spin fluctuations become
more ‘stiff’ and hence the rate of their suppression with H also
slows down.

3.3. Temperatures close to TC

For temperatures close to TC but outside the critical region,
the self-consistent calculations [14] of the thermally excited
(TE) and/or zero-point (ZP) spin-fluctuation contributions to
magnetization, in the presence (H 	= 0) and absence (H = 0)
of magnetic field, yield the expression

[M(T, H )]SF = M(0, H )[1 − A4/3(H )T
4/3]1/2 (7)

and make the specific prediction [14]

A4/3(H ) = A4/3(H = 0)[1 − ηH 1/2] (8)

about the functional form of the coefficient A4/3(H ) of the
T 4/3 term in equation (7). In equation (7), the T 4/3 term
for H = 0 (or, equivalently, A4/3(H = 0)) originates
from both ZP and TE spin fluctuations whereas the same
term in finite fields, i.e. A4/3(H 	= 0), arises from the
TE spin fluctuations alone. An elaborate analysis of the
M(T, H ) and M(T, H = 0) data taken at temperatures
close to TC (typically in the temperature range 0.75TC �
T � 0.93TC) based on equation (7), along the lines
already described in sections 3.1 and 3.2, allows us to
make the following important observations. (i) That the
observed functional forms of the ‘in-field’ magnetization,
M(T, H ), and spontaneous magnetization, M(T, H = 0),
at such temperatures are best described by equation (7) is
evident from the linear M2(T, H ) − T 4/3 (open circles) and
M2(T, H = 0) − T 4/3 (crosses) plots, shown in figures 7
and 8(a). (ii) Similarly, the linear variation of the coefficient
A4/3(H ) with

√
H (figure 8(b)) conforms very well with

the theoretical prediction [14], equation (8). Furthermore, a
linear extrapolation of the A4/3(H ) − √

H plots to H = 0
always yields the same value (within the uncertainty limits)
for A4/3(H = 0) as that directly determined (solid circle)
from the slope of the linear M2(T, H = 0) − T 4/3 plot.
(iii) Both A4/3(H = 0) and η decrease with increasing Ni
concentration, as shown in figure 9. The values A4/3(H =
0) = 4.65(3) × 10−3 K−4/3 and η = 2.63(2)× 10−3 Oe−1/2,
reported [10, 11] for the ordered Ni3Al, included in figure 9
for comparison, are much higher than the ‘as-prepared’ site
disordered counterpart.

Considering that both ZP and TE (only TE) spin
fluctuations give rise to A4/3(H = 0) (A4/3(H 	= 0)),
[A4/3(H = 0)]−1 is a direct measure of the ‘stiffness’
of the ZP and TE spin fluctuations while the coefficient η
in the expression, equation (8), for A4/3(H ) quantifies the
suppression of TE spin fluctuations by magnetic field. In
view of this assignment, the above observation (iii) implies

7
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Figure 7. M2(T, H = 1 kOe) as a function of (T/TC)
4/3 at

temperatures close to the Curie point, TC, for the samples ap-Ni74.3,
ap-Ni74.8, ap-Ni75.1 and ap-Ni76.1. The best least-squares fits
(continuous curves) through the data (open symbols) are based on
equation (7) of the text.

that increasing compositional disorder (x → xc) progressively
lowers the ‘stiffness’ of the ZP and TE spin fluctuations
so that the suppression of TE fluctuations, in particular, by
field becomes correspondingly large (the ZP contribution is
essentially independent of H [14]); site disorder also plays
the same role so far as the stoichiometric composition is
concerned. This inference becomes all the more evident when
equation (8) is cast into the following scaling form:

[A4/3(H )/A4/3(H = 0)] = 1 − (H/H0)
1/2 (9)

where H0 = η−2 denotes the critical field at which the
contribution to magnetization arising from the thermally
excited spin fluctuations gets completely quenched. While
figure 10 serves to demonstrate the validity of this scaling
for the samples ap-Ni74.3, ap-Ni74.8 and ap-Ni76.1, its inset
shows that lower and lower fields are required to quench the
TE spin-fluctuation contribution as the compositional disorder
increases, i.e. as x → xc. The same decreasing trend in the
fields required to quench the TE spin-fluctuation contribution
to resistivity with the increasing degree of compositional
disorder was observed in paper I but the values of H0 were

Figure 8. The upper panel displays the typical M2–T 4/3 plots at
temperatures close to TC for a few representative but fixed values of
H . The continuous lines through the M2(T, H) data (open circles)
and M2(T, H = 0) data (crosses) are the least-squares fits based on
equation (7). The lower panel demonstrates that the coefficient
A4/3(H) of the T 4/3 term in equation (7) varies linearly with

√
H for

the samples ap-Ni74.3, ap-Ni74.8 and ap-Ni76.1 and thereby testifies to
the validity of equation (8).

Figure 9. Variations of the prefactor A4/3(H = 0) and the coefficient
η (appearing in equation (8)) with Ni concentration. The values for
A4/3(H = 0) and η reported in [10, 11] for the stoichiometric
composition are included for comparison. Smooth curves through the
data serve only as a guide to the eye.

an order of magnitude higher. Another important aspect of
the presently determined values of A4/3(H = 0) is that they
yield the values for the Curie temperature T SF

C
∼= 49.1, 56.8

8
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Figure 10. A4/3(H)/A4/3(H = 0) versus (H/H0)
0.5 scaling plot for

the samples ap-Ni74.3, ap-Ni74.8 and ap-Ni76.1. The inset depicts the
variation of the critical field H0 (required to quench the
spin-fluctuation contribution to magnetization at temperatures close
to TC) with the Ni concentration.

and 72.3 K for the samples ap-Ni74.3, ap-Ni74.8 and ap-Ni76.1,
respectively, when the relation [14] T SF

C = [A4/3(H = 0)]−3/4

is used. These values are fairly close to the actual values of TC

determined from the Arrott plots (figure 11).
At this stage, we return to the basic question as to

why, in a previous report [1], the temperature dependence
of magnetization at H = 1 kOe in the samples ap-Ni74.31,
ap-Ni74.73 and ap-Ni75.98 with composition similar to those
used in this work, could be closely reproduced, over an
unusually wide temperature range, T � TC, by only the
crossover percolation (localized-spin) theories but not by the
spin-fluctuation (itinerant-electron) models. In the present
case, the M(T, H = 1 kOe) data for the samples ap-Ni74.3,
ap-Ni74.8, ap-Ni75.1 and ap-Ni76.1 could also be described
very well by the crossover percolation theories with the
values T ∗

co
∼= 0.5, 5, 20 and 40 K for the temperature

T ∗
co at which a crossover from the low-temperature magnon

regime to high-temperature fracton regime occurs in a three-
dimensional ferromagnetic percolating network. Note that
these values of T ∗

co agree quite well with those (table 2 in [1])
reported [1] previously for the similar alloy compositions. In
view of this result, a spin-wave (propagating transverse spin-
fluctuation) description of the temperature variations of the
‘zero-field’ (spontaneous) and ‘in-field’ magnetizations, within
the framework of the localized-spin (spin-fluctuation) theories,
is possible only for T � T ∗

co. This inference is borne out by our
finding that equations (3a) and (3b) correctly account for the
decline in M(T, 0) and M(T, H ) with increasing temperature
observed in ap-Ni75.1 and ap-Ni76.1 for T � 20 K but fail
to do so in ap-Ni74.3 and ap-Ni74.8 for 5 K � T � TC

(figures 2 and 3), where these alloys with x ≈ xc exhibit
non-Fermi liquid behaviour. In hindsight, it now becomes
apparent that the ferromagnetic fractons mimic the behaviour

Figure 11. M2(T, H) versus H/M(T, H) (Arrott) plots for samples
(a) ap-Ni74.3 and (b) ap-Ni76.1 over a wide temperature range that
embraces the critical region near the ferromagnetic-to-paramagnetic
phase transition. These Arrott plots also indicate the values of TC for
the samples in question.

of over-damped spin waves and/or exchange-enhanced spin-
density fluctuations at temperatures T � T ∗

co.

3.4. Critical region

Figure 11 highlights the salient features of the Arrott
(M2(T, H ) versus H/M(T, H )) plots of the alloys with
extreme compositions, i.e. ap-Ni74.3 and ap-Ni76.1, over a
wide temperature range which embraces the critical region near
the ferromagnetic (FM)–paramagnetic (PM) phase transition.
It is customary [24] to compute spontaneous magnetization,
M(T, 0) ≡ M(T, H = 0), and inverse initial susceptibility,
χ−1(T ), from the intercept values at different temperatures
on the ordinate (T � TC) and abscissa (T � TC) obtained
when the linear high-field portions of the Arrott plot (AP)
isotherms are extrapolated to H = 0 and M2 = 0, respectively,
as shown in figure 11. However, in the present case, the
AP isotherms for temperatures in the close vicinity of the
Curie point, TC, acquire concave-upward curvature as x →
xc. To elucidate this point further, the concave-upward
curvature is completely absent in ap-Ni76.1, starts showing up
in ap-Ni74.8 but the AP isotherms are linear above (H/M) ∼=
200, and becomes pronounced in ap-Ni74.3. In view of the
finding, based on the electrical resistivity and EDAX data on
ap-Ni74.3 [18], that a minor isostructural phase of lower Ni
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Figure 12. Spontaneous magnetization squared, M2(T, H = 0), and inverse initial susceptibility, χ−1(T ), as functions of the reduced
temperature ε = (T − TC)/TC within the range −0.1 � ε � 0.1. The continuous straight lines through the data (open symbols) represent the
temperature variations of M2(T, H = 0) and χ−1(T ) predicted by equations (10) and (11) of the text in the asymptotic critical region when
β = 0.5 and γ = 1.0.

concentration, and hence lower TC, is present in this sample,
such a departure from linearity basically reflects the presence
of this additional magnetic phase. Taking cognizance of this
result, extrapolations to H = 0 and M2 = 0 of the two linear
regions in the AP isotherms for ap-Ni74.3, (H/M) < 300 (low-
field (lf) region) and (H/M) > 500 (high-field (hf) region)
have been carried out to obtain M(T, 0) ≡ M(T, H = 0)
and χ−1(T ) whereas the customary approach has been used
for the remaining compositions. TC marks the temperature at
which the AP isotherm is linear over the entire H/M range
and upon extrapolation passes through the origin, where both
M(T, 0) and χ−1(T ) go to zero. For ap-Ni74.3, the low-
field and high-field extrapolations yield the values for TC as
T lf

C = 48.25(5) K and T hf
C = 39.10(1) K, respectively, as

indicated in figure 11(a). Note that the M(T, 0) data (obtained
from the Arrott plots and represented by crosses) have been
used in figures 3, 6 and 8. The critical exponents β , γ and δ,
defined as [24]

M(T, 0) = B(−ε)β ε < 0 (10)

χ−1(T ) = �εγ ε > 0 (11)

M(T = TC, H ) = AH 1/δ ε = 0 (12)

with ε = (T − TC)/TC, that characterize the asymptotic
critical behaviour of spontaneous magnetization and initial
susceptibility near the FM–PM phase transition, have been
determined from the M(T, 0), χ−1(T ) and M(T = TC, H )
data using the method of analysis whose details are given
elsewhere [24–26]. That the plots of M2(T, 0) against ε and
χ−1(T ) against ε, based on equations (10) and (11) and shown
in figure 12, are linear within the asymptotic critical region
−0.03 � ε � 0.03 imply that the presently determined (mean-
field) values for the critical exponents β = 0.50(5) and γ =
1.00(5) correctly describe the asymptotic critical behaviour
of M(T, 0) and χ−1(T ). However, larger than usual scatter
in the M(T, 0) and χ−1(T ) data precluded an unambiguous
determination of the multiplicative logarithmic corrections to
the mean-field power laws in the asymptotic critical region.
Such corrections were previously reported [25, 26] for the
alloy with stoichiometric composition, Ni75Al25, prepared in
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Figure 13. log M versus log H plots at T = TC for the samples
ap-Ni74.3, ap-Ni74.8 and ap-Ni76.1. The continuous straight lines
through the data (symbols) represent the variations of log M with
log H at T = TC predicted by equation (12) for the mean-field value
δ = 3.

different states of site disorder. Consistent with the mean-
field values of the critical exponents β and γ , the log M–
log H plots at T = TC, based on equation (12) and shown
in figure 13, yield the mean-field value δ = 3 (inverse slope
of the straight lines) for the critical exponent of the critical M–
H isotherm in the same magnetic field regimes as those used
for the extrapolation of the Arrott plot isotherms to H = 0
and M2 = 0 in order to obtain M(T, 0) and χ−1(T ). A
comparison of the presently determined values for the critical
exponent in samples with both compositional disorder and site
disorder with those [25, 26] in the samples of stoichiometric
composition but having different degree of site disorder
permits us to conclude that both compositional disorder and
site disorder have no effect on the critical behaviour of the
weak itinerant-electron ferromagnets in question.

4. Summary

Magnetic behaviour of the binary Nix Al100−x alloys with
x = 74.3, 74.8, 75.1 and 76.1 at.% Ni, which possess both
compositional disorder and site disorder, has been extensively
studied over a wide temperature range that embraces the
critical region near the ferromagnetic-to-paramagnetic phase
transition. The results, so obtained, are compared with those
reported in the literature on the ordered counterparts (which
have only compositional disorder) and with the theoretical
predictions, based on the spin-fluctuation models. Such
a comparison reveals the following. (i) With increasing
compositional disorder, i.e. as x → xc, Curie temperature, TC,
and spontaneous magnetization at 0 K, M0, in the alloys with
compositional disorder alone, decrease in accordance with the
power laws TC(x) = tx(x − xc)

τ and M0(x) = mx(x − xc)
ψ .

In the presence of site disorder, in addition to compositional

disorder, these power laws still hold but with distinctly
different values for the exponents τ and ψ , and a lower value
(by nearly 1 at.% Ni) for the threshold Ni concentration, xc.
Compared to the values of TC for the Nix Al100−x alloys with
compositional disorder alone, site disorder enhances TC for a
given composition (leaves TC essentially unaltered) and this
enhancement grows rapidly as x → xc (for x � 76 at.%).
Contrasted with this behaviour, except for x ≈ xc, M0 is
relatively insensitive to site disorder. Insensitivity of M0 to site
disorder basically reflects that site disorder has essentially no
effect on the density of states, N(EF), at the Fermi level, EF,
and the shape of the density-of-states curve near EF (except
for x ≈ xc, where site disorder tends to primarily enhance
N(EF) and thereby stabilize long-range ferromagnetic order
for Ni concentrations below the threshold concentration, xc

∼=
74.6 at.%, dictated by compositional disorder). As x → xc,
site disorder increases the concentration of Ni atoms on the Al
sub-lattice beyond that allowed by the compositional disorder
and thereby enhances the number of Ni nearest neighbours for
a given Ni atom and hence the TC. (ii) At low and intermediate
temperatures, spontaneous magnetization, M(T, H = 0), as
well as the ‘in-field’ magnetization, M(T, H ), exhibit non-
Fermi liquid behaviour in the samples ap-Ni74.3 and ap-Ni74.8.
As the critical concentration, xc, is approached from above, i.e.
as the compositional disorder increases, stronger deviations
from the Fermi liquid behaviour occur and the temperature
range over which the non-Fermi liquid behaviour persists
widens. The non-Fermi liquid behaviour is taken to basically
reflect that the increased compositional disorder alters the spin-
wave dispersion at finite q such that, as q increases from
q = 0, the spin-wave dispersion becomes increasingly similar
to the non-propagating spin-fluctuation dispersion prevalent
at temperatures close to TC. In contrast, the ap-Ni75.1 and
ap-Ni76.1 alloys follow the behaviour that the self-consistent
spin-fluctuation theory [14] predicts for weak itinerant-electron
ferromagnets without any disorder. That is (a) spin waves, at
low temperatures (T � 18 K) and thermally excited (TE) plus
zero-point (ZP) exchange-enhanced spin-density fluctuations,
at intermediate temperatures and for temperatures close to TC

(0.5TC � T � 0.95TC), completely account for the observed
temperature variations of M(T, H = 0) and M(T, H );
(b) in accordance with the theoretical predictions [14, 19],
the functional form for the suppression of spin waves and
TE spin fluctuations by the magnetic field, H , is

√
H for

spin waves at low temperatures and ∼H (
√

H) for TE spin
fluctuations at intermediate temperatures (temperatures close
to TC) and (c) compositional disorder and site disorder both
leave these functional forms unaltered but reduce the spin-
wave and (ZP + TE) spin-fluctuation ‘stiffness’ so that the
suppression of these low-lying magnetic excitations by H
becomes correspondingly large. (iii) For temperatures in the
vicinity of TC, M2(T, H = 0) ∼ T 4/3 and M2(T, H ) ∼
T 4/3 for all the samples irrespective of the type of disorder
present and regardless of the magnitude of field, provided
H < H0, the field required to quench the spin-fluctuation
contribution to spontaneous magnetization. That these power
law temperature variations are independent of H conforms
well with the results of the self-consistent spin-fluctuation
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calculations [14]. (iv) Both compositional disorder and site
disorder have no effect on the critical behaviour of the alloys
near the ferromagnetic-to-paramagnetic phase transition.

The observations similar to (ii)–(iv) stated above have
also been made in paper I, based on the resistivity and
magnetoresistance data taken on the same alloy compositions.
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